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Abstract

The paper presents a computational investigation of instabilities in pulsatile flow through a three-dimensional stenosis. The

computations have been conducted using a third-order high-resolution scheme and a non-linear multigrid algorithm. The simu-

lations reveal the existence of unstable flow throughout the pulsatile cycle. The instability is manifested by asymmetric flow pat-

terns––though the stenosis is axisymmetric––large flow variations in the cross-sectional planes, and swirling motion in the

poststenotic region. The instability leads to a strongly disturbed flow several radii downstream of the stenosis, as well as spatio-

temporal fluctuations of the circumferential shear stress and vorticity. � 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

In the context of biofluid mechanics, the computa-
tional study of flows through stenoses is motivated by
the need to obtain a better understanding of the impact
of flow phenomena on diseases such as atherosclerosis
and stroke. The flow phenomena occurring in stenotic
arteries include asymmetric flow separation, instabilities
and laminar-to-turbulent transition. These phenomena
may have significant effects on the wall shear stress
(WSS). Past experimental studies have shown that in
pulsatile flows both high and low WSS values have im-
portant haemodynamic effects (Ku et al., 1985; Caro
et al., 1971); the former because of their magnitude and
the latter because of their rapid variations in space and
time. A review of past experimental and theoretical
studies is given in Berger and Lou (2000).

A better understanding of flows through stenosis may
also contribute to improvements in medical diagnosis
procedures and stenosis-detection techniques. By ana-
lyzing the noise generated by a poststenotic disturbed
flow it may be possible to localize artery constriction.
Experiments have been performed by Clark (1980)
aiming at analyzing turbulence produced by stenosis.
Khalifa and Giddens (1981) have also conducted similar

experiments aiming at relating the level of disturbances
of the poststenotic flow to the degree of stenotic ob-
struction. However, the flow through a stenosis is far
from being well understood.

To our knowledge, a computational study of three-
dimensional, pulsatile and unstable flow through a ste-
nosis has not previously been conducted. Previous
computational studies were concerned with steady and
unsteady axisymmetric flows; for example, see the recent
study by Stroud et al. (2000) in which a numerical in-
vestigation of the flow in stenotic axisymmetric vessels
of different shapes was presented. In the present paper,
we study by means of numerical simulations pulsatile,
three-dimensional, unstable flow through a stenosis and
examine the effects of the instability on the wall shear-
stress, velocity and vorticity fields.

The paper is organised as follows. The flow problem
and numerical procedure is described in Section 2. The
onset of the instability is discussed in Section 3. In
Sections 4 and 5, we discuss the effects of the instability
on the WSS and vorticity generation, respectively. Fi-
nally, Section 6 summarises the conclusions drawn from
the present investigation.

2. Problem description

The stenosis model considered here is similar to the
one used by Khalifa and Giddens (1981) in their ex-
perimental study. These experiments do not provide

International Journal of Heat and Fluid Flow 23 (2002) 657–663

www.elsevier.com/locate/ijhff

* Corresponding author. Tel.: +44-20-78825194; fax: +44-20-

89831007.

E-mail address: d.drikakis@qmul.ac.uk (D. Drikakis).

0142-727X/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0142-727X(02 )00161-3

mail to: d.drikakis@qmul.ac.uk


sufficient information for validating CFD models, but
they have demonstrated that stenotic pulsatile flows are
indeed associated with flow disturbances phenomena
and large-scale structures, which deviate from the lam-
inar flow behaviour.

The geometry consists of an axisymmetric stenosis
with 75% reduction in the cross-sectional area, i.e., the
stenotic area is 25% of the pipe area (Fig. 1). We have
conducted several numerical experiments using different
pipe lengths upstream and downstream of the stenosis in
order to ensure independence of the results from the
position of the inflow and outflow boundaries. We have
found that 2D and 70D lengths upstream and down-
stream, respectively, are sufficient. Time-dependent,
three-dimensional flow computations were carried out
on a grid containing 250,000 (400 � 25 � 25) cells; the
grid was non-uniform in the radial direction with a

clustering of grid lines in the near wall region. Note that
in the literature simulations of stenotic flows using even
coarser grids have been reported (Berger and Lou, 2000;
Stroud et al., 2000). In a recent simulation study of ar-
terial flows (Prakash and Ethier, 2001), it was shown
that 325,000 grid nodes are required to achieve grid in-
dependence in the WSS field and about 190,000 nodes to
achieve less than 10% spatial discretisation error in the
WSS. Although we do not claim that the grid employed
here provides a grid independent solution in the WSS
field, we have found that the flow remains (at least)
qualitatively the same on an even coarser grid contain-
ing about 150,000 cells; the difference in averaged WSS
when changing from 150,000 to 250,000 cells is about
9%. Since our objective is to qualitatively study the
unstable flow, the grid containing 250,000 cells can be
considered as a good compromise between accuracy and
computational cost.

The inlet streamwise velocities uinðy; z; tÞ was defined
by a perturbed parabolic profile

uinðy; z; tÞ ¼ um½ þ ua sinðxtÞ þ fuðy; z; tÞ� 1

�
� y2 þ z2

R2

�
;

ð1Þ

where the inlet centreline velocity is given by the sum of
a mean velocity um ¼ 41 cm/s, and a sine-wave of fre-
quency x ¼ 2p and amplitude ua ¼ 10 cm/s (Fig. 1). The
function f ðy; z; tÞ is a time-dependent white-noise per-
turbation with amplitude 20% of um.

The inlet velocities vinðy; z; tÞ and winðy; z; tÞ were also
defined by a formula similar to (1) with um ¼ ua ¼ 0 and
amplitude of perturbations 15% of um

vinðy; z; tÞ ¼ fvðy; z; tÞ 1

�
� y2 þ z2

R2

�
; ð2Þ

winðy; z; tÞ ¼ fwðy; z; tÞ 1

�
� y2 þ z2

R2

�
: ð3Þ

Nomenclature

D diameter of the pipe
fu; fv; fw white-noise perturbation functions associ-

ated with the inlet uin; vin and win velocity
components, respectively.

ua amplitude of the sine-wave velocity
u; v;w Velocity components
um temporal mean centreline velocity at the inlet
R radius of the pipe
m kinematic viscosity
Re ¼ umR=m Reynolds number
r radial position with origin the pipe centre

t time
x Cartesian co-ordinate in the streamwise di-

rection
y; z Cartesian co-ordinates in the cross-sectional

plane
x frequency
xx streamwise vorticity
a ¼ Rðx=mÞ1=2

Womersley number
sxn longitudinal wall shear stress
stn circumferential wall shear stress

Fig. 1. The inlet velocity profile (top) and stenosis geometry (bottom)

used in the computations; the unit is the radius of the pipe R. The

stenosis length is 4R.
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Numerical experiments showed that a further increase in
the magnitude of the initial perturbations did not
change (at least qualitatively) the flow results. 1

No-slip boundary conditions were used on the walls
of the pipe. At the outlet the second-order derivatives of
the flow variables were set equal to zero. The instan-
taneous Reynolds number, based on the centreline
temporally averaged streamwise velocity and the pipe
radius, has minimum and maximum values of 760 and
1245, respectively. The pulsatile frequency number
(Womersley number) is a ¼ 9:87. The above values of
Reynolds and Womersley numbers are within the range
of values found in animal experiments (Giddens et al.,
1976); similar values were also used by Khalifa and
Giddens (1981) in their laboratory experiments.

The computational investigation is based on the
three-dimensional Navier–Stokes equations for an in-
compressible fluid. We have assumed the fluid to be
Newtonian, a generally accepted approximation of the
rheological behaviour of blood in the larger blood ves-
sels. Additionally, we have considered the arterial wall
to be rigid. The above two assumptions are introduced
in order to simplify the analysis of our simulations and
thus develop a gradual understanding of the unstable
flow through a stenosis. The computational code
employs the finite volume approach and curvilinear
co-ordinates. The numerical algorithm is based on high-
resolution third-order schemes (Drikakis, 2001) and a
non-linear multigrid method (Drikakis et al., 1998) in
conjunction with a TVD fourth-order Runge–Kutta
scheme (Shu and Osher, 1988) for the time integration.
The continuity and momentum equations are solved in a
coupled fashion using dual-time stepping (Merkle and
Athavale, 1987; Rogers et al., 1991) in conjunction with
the artificial-compressibility approach (Chorin, 1967).
The present method allows large time steps to be em-
ployed without degrading the stability of the numerical
solution. Further details about the numerical method
can be found in Drikakis et al. (1994, 1998, 2001).
Validation of the computer code for flows relevant to
the one discussed here has been presented in various
past papers (Drikakis et al., 1994; Drikakis and Pa-
padopoulos, 1996; Drikakis, 1996, 1997).

3. Onset of instability

In the numerical simulation the onset of instability
can be detected as asymmetric flow in the cross-sectional
planes. The instability results in substantial asymmetries

within the separated flow region downstream of the
stenosis. Note that in the case of stable flow the solution
will remain axisymmetric throughout the domain, even
when random perturbations are imposed on the initial
velocity profiles. In this case, the axisymmetry of the
flow will be established after a few pulsatile cycles.

The flow instability through a stenosis resembles flow
instabilities occurring in flows through a sudden ex-
pansion. The phenomenon of asymmetric separation in
suddenly expanded (steady) flows has been discussed in
several previous experimental (Chedron et al., 1978;
Fearn et al., 1990) and computational (Alleborn et al.,
1997; Drikakis, 1997) works. The above studies have
shown that at very low Reynolds numbers suddenly
expanded flows remain symmetric, but with increasing
Reynolds number flow asymmetries begin to appear.

Here, computations were carried out for several
pulsatile cycles until the instability was fully established.
Nine to eleven cycles were found sufficient for obtaining
a full spatial growth of the instability. In qualitative
terms the flow evolves in a similar fashion across dif-
ferent pulsatile cycles after the instability is established.
The instability initiates inside the stenosis and fully es-
tablishes downstream of it. In Fig. 2, asymmetric flow
patterns in different cross-sections downstream of the
stenosis are shown by means of isocontour plots of the
streamwise velocity. The breaking of the flow symmetry
is associated with the formation of a vortex on the upper
part of the cross-section (see plots for x ¼ 2:5 in Fig. 2).

Fig. 2. Isocontours of the streamwise velocity at different time instants

and cross-sections.

1 There is a threshold value for the forcing amplitude due to

numerical considerations. We have found that if the forcing amplitude

is sufficient small the perturbations will be attenuated quickly due to

numerical dissipation; this also depends on the properties of the

numerical scheme employed (Drikakis and Smolarkiewicz, 2001).
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As the instability spreads downstream a second vortex
occurs on the lower part of the cross-section (see plots
for x ¼ 7:5). The vortices emerge from the near-wall
region and gradually occupy a large part of the cross-
sectional area. Previous experiments (Chedron et al.,
1978; Fearn et al., 1990) and simulations (Drikakis,
1997) of suddenly expanded channel flows have shown
that at relatively low Reynolds numbers the instability
appears near the expansion as asymmetric separation on
the upper and lower channel walls without the presence
of three-dimensional effects. In the present case, the
breaking of the flow axisymmetry is associated with
changes in both the longitudinal and circumferential
direction, but the intensity of asymmetries in the sec-
ondary plane readily increases further downstream (for
example, at x ¼ 50:3). The asymmetric flow behaviour
persists over a few radii downstream prior to the flow
becoming fully axisymmetric again.

With respect to the spatial growth of the instability,
the simulations revealed that important flow changes

occur within two downstream regions. These can be
observed in the isosurfaces of the streamwise velocity at
different time instants (Fig. 3). The first region (labelled
‘‘region A’’) is closer to the constriction and encom-
passes the fluid jet arising from the stenotic region. In
the region A, the instability has been established, but
has not broken the coherence of the fluid jet. The second
region (labelled ‘‘region B’’) is further downstream where
substantial variations of the flowfield occur. In this re-
gion, the coherence of the fluid jet cannot be maintained
due to the swirling motion of the fluid. Although the
lengths of the regions A and B vary among different time
instants, the largest flow variations take place within
x ¼ 30–50 radii downstream of the stenosis.

Fig. 4 shows the cross-flow streamtraces of the ve-
locity field at different time instants for the cross-section
at x ¼ 30. As a result of the instability, the critical points
(points of zero velocity) vary in number and location at
different time instants.

4. Wall shear stress

Fig. 5 shows isocontours of the longitudinal compo-
nent, sxn, of the wall shear-stress at five different time
instants; sxn is calculated by projecting the velocity
vector onto a direction tangent to the wall, facing the
streamwise direction. The separated flow region, indi-
cated by negative shear stress, is extended up to 60 radii
(t ¼ 0:8) downstream of the stenosis (Fig. 5). The extent

Fig. 3. Isosurfaces of the streamwise velocity at different time instants:

u ¼ 0:96 at t ¼ 0:2; u ¼ 0:66 at t ¼ 0:5; and u ¼ 0:62 at t ¼ 0:8.

Fig. 4. Cross-flow streamtraces of the velocity field at different time

instants for x ¼ 30.
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of separation is reduced at the beginning of the pulsatile
cycle.

Furthermore, in the region A we observe elongated
structures emerging from the exit of the stenosis. These
elongated structures are due to the distortion of the fluid
jet from an axisymmetric profile as a result of the two
vortices emerging from the near wall region (Fig. 2). The
distortion of the fluid jet also leads to the formation of
‘‘bubbles’’ (Fig. 5 for t ¼ 0:6–0:8) of positive wall shear-

stress, inside the regions of negative stresses. Strong
mixing of positive and negative stresses occurs between
x ¼ 35 and 45. For all time instants the largest values of
sxn appear in the stenotic region (Fig. 6). The peak value
occurs at the centre of the stenosis.

In Fig. 7, the isocontours of the circumferential
component of the shear stress stn are shown; stn is cal-
culated by projecting the velocity vector onto a direction
tangent to the wall, orthogonal to the streamwise

Fig. 5. Isocontours of sxn at different time instants; dashed and solid

lines denote negative and positive stresses, respectively.

Fig. 6. Distribution of maximum sxn (for each cross-section) at five

different time instants. The two vertical lines represent the beginning

and end of the stenosis.

Fig. 7. Isocontours of stn at different time instants.

Fig. 8. Distribution of maximum stn (for each cross-section) at five

different time instants. The two vertical lines represent the beginning

and end of the stenosis.
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direction. Similar to sxn, elongated structures of stn ap-
pear close to the constriction region, but they extend to
a smaller area compared to sxn. Another observation is
that the mixing of regions of positive and negative
stresses is more evident for stn than sxn. The maximum
values of stn at each cross-section are plotted in Fig. 8.
The results show that stn is significantly smaller, as ex-
pected, than sxn in the region of the stenosis. On the
other hand, substantial variations of stn occur in the
region B with the peak value of stn occurring at x ¼ 40
(Fig. 8). This is in accord with the results discussed in
the previous section concerning the breaking of flow
coherence and swirling motion in the region B.

5. Vorticity

Fig. 9 shows the zero isosurface of the streamwise
vorticity, xx, as well as volumes of positive (gray) and
negative (black) streamwise vorticity at t ¼ 0:4. In the

region A the surface consists of a superposition of
elongated vorticity sheets. Further downstream, these
sheets roll up to form conical structures facing the
streamwise direction. Elongated ‘‘half-ring’’ like struc-
tures, formed by positive and negative vorticity, arise
from the exit of the stenosis and terminate at about
x ¼ 21 (Fig. 9). Further downstream, these structures
break up into smaller ones because of the full develop-
ment of the three-dimensional instability. In the region
B, positive and negative vorticity regions alternate in
both the streamwise and radial directions.

The longitudinal distribution of the maximum (per
cross-section) value of the vorticity component xx at
different time instants is shown in Fig. 10. The vorticity
exhibits large variations in the region B during the de-
celeration phase of the flow. This is in accord with
our previous observation that intense swirling of the
flow occurs in this region. Moreover, xx exhibits a peak
value in the stenosis where the onset of instability takes
place.

6. Concluding remarks

Numerical simulation of pulsatile flow through a
symmetric stenosis revealed a three-dimensional insta-
bility with profound effects on the flow development.
The simulation showed that most of the important flow
changes concentrate in two poststenotic regions. In the
first region, closer to the constriction, the instability is
primarily associated with streamwise flow changes. In
this region the coherence of the fluid jet, arising from
the stenosis, is maintained until the second poststenotic
region begins. In the second region the flow exhibits

Fig. 9. Zero isosurface of the streamwise vorticity xx at t ¼ 0:4 (top)

and volumes of positive (gray) and negative (black) streamwise vor-

ticity xx at t ¼ 0:4 (bottom).

Fig. 10. Distribution of the maximum (per cross-section) value of the

vorticity component xx at different time instants.
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swirling and the coherence of the fluid jet cannot be
maintained. These effects are also associated with an
increase of the circumferential stress, as well as large
spatial and temporal fluctuations of the WSS and vor-
ticity.

In the context of medical diagnosis, it is important to
detect as accurately as possible the size and location of
the artery obstruction. The present results show that due
to the flow instability important variations occur after
the stenosis. Subsequently, this flow behaviour may need
to be taken into account by diagnostic criteria and de-
tection techniques used in clinical practice.
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